Profile Predictive Inference

نویسندگان

  • Alp Kucukelbir
  • David M. Blei
چکیده

Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy su ers. We develop population empirical Bayes ( ), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and set the empirical population as its prior. This leads to a new predictive density that mitigates model mismatch. We e ciently apply this method to complex models by proposing a stochastic variational inference algorithm, called bumping variational inference ( ). We demonstrate improved predictive accuracy over classical Bayesian inference in three models: a linear regression model of health data, a Bayesian mixture model of natural images, and a latent Dirichlet allocation topic model of scientific documents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Semiparametric inference in mixture models with predictive recursion

Predictive recursion (PR) is an accurate and computationally efficient algorithm for nonparametric estimation of mixing densities in mixture models. In semiparametric mixture models, however, PR fails to account for any uncertainty in the additional unknown structural parameter. As an alternative to existing PR profile likelihood methods, we treat PR as a filter-like approximation to fitting a ...

متن کامل

استنباط پیشگو ناپارامتری فازی بهینه برای طرح نمونه‌گیری جهت پذیرش یک مرحله‌ای

Acceptance sampling is one of the main parts of the statistical quality control. It is primarily used for the inspection of incoming or outgoing lots. Acceptance sampling procedures can be used in an acceptance control program to reach better quality with lower expenses, improvement of the control and the increase of efficiency. The aims of this paper, studying acceptance sampling based on non-...

متن کامل

DeepPep: Deep proteome inference from peptide profiles

Protein inference, the identification of the protein set that is the origin of a given peptide profile, is a fundamental challenge in proteomics. We present DeepPep, a deep-convolutional neural network framework that predicts the protein set from a proteomics mixture, given the sequence universe of possible proteins and a target peptide profile. In its core, DeepPep quantifies the change in pro...

متن کامل

Appropriateness of some resampling-based inference procedures for assessing performance of prognostic classifiers derived from microarray data.

The goal of many gene-expression microarray profiling clinical studies is to develop a multivariate classifier to predict patient disease outcome from a gene-expression profile measured on some biological specimen from the patient. Often some preliminary validation of the predictive power of a profile-based classifier is carried out using the same data set that was used to derive the classifier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1411.0292  شماره 

صفحات  -

تاریخ انتشار 2014